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8-0x0-7,8-dihydro-2leoxyguanosine (., = 8.6, Ky =
11.7)2 frequently called 8-hydroxy-@eoxyguanosine={ 8-O-
HdG), is probably the most important and best-documented
product of “oxidative stress*” in biological systems. Its
concentration in the cellular DNA is, in fact, a quantitative
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measure of the degree of damage that an organism hasrigure 1. Oxidation of 8-OHdG by G{H)" at pH 7. The pulse (200 ns

undergoné:1? Unless 8-OHdG is built by nature into DNA on
purpose, it is the product of oxidativkecompositiorf 2'deoxy-
guanosine (dG). A large number of oxidants/oxidizing environ-
ments leading from dG to its 8-hydroxy derivative have been
identified, some of the more important ones being singlet
oxygent314 the OH radical (produced by ionizing radiation or
transition metal catalyzed decomposition of hydroperoxi&es),
andphotooxidatiort” (which is believed? 2! to proceed via the
guanosine radical cation).

8-OHdG is a mutagenic lesion involved in carcinogenesis and
aging®22 but as suchit doesnot lead to DNA strand breakage.
However, it is much more easily oxidized than its natural “parent”,
dG 4212326 gnd its oxidation produds a candidate for (piperi-
dine-induced) strand breakagfe?® In view of this pronounced
sensitivity, it is necessary to fully understand the radical chemistry
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3 MeV electrons)-irradiated solution contained 2 mM guanosine, 0.6 mM
8-OHdG, 20 mM KkS,0s and 0.5 Mtert-butyl alcohol. Absorption spectra
(G(radical)= 3.3) of G(—H)*, observed at 1.;zs: O, and of 8-OHdG-
(—H)*, observed at 1@s after the pulse®. In insets d and e are shown
the determinations of theip-values of 8-OHdG{H)* using, however,

Nz to oxidize 8-OHdG.

of 8-OHdG and particularly the one-electron redox properties of
this physiologically important molecule. With this aim, the pulse
radiolysis method with optical and conductance detection was
applied. 8-OHd® in 0.01 to 1 mM aqueous solutions was one-
electron-oxidized with the radiation-chemically produdadr-
ganicradicals By, Ns*, TI>*, or SO~ (Table 1). From the pH-
dependent absorption speéiréFigure 1, insets d, e) are derived
the (de)protonation equilibria (Schemé&?hyith pK,, = 6.6 and
pKa2 = 12.3. These values are higher than those for dGuo (3.9
and 10.83 which reflects the increase in electron density due to
the oxygen at C8.

The same conclusion can be drawn from the reduction potential
(0.74 VINHE, see later) of 8-OHdGH)* as compared to the
1.29 VINHE* of G(—H)".

8-OHdG can also be oxidized with varioesganic radicals
(Table 1), such as tyrosyl or tryptophyl or enolether radical
cations® peroxyls, and even with the deprotonated radical cation
of 2'deoxyguanosinetSmonophosphate or that of guanosine,
G(—H)*. The protocol for this reaction is shown in Figure 1.

The initial spectrum (Figure 1)) is that of G(-H)* (produced
via SO~ from the excess guanosine present). Due to the presence
of 8-OHdG, G(H)* disappears (inset b) to give rise to 8-OHdG-
(—H)* (see® and inset a). The rate constant for the oxidation of
8-OHdG by GFH)* (obtained via inset c) is 4.6 1 M~1s!
at pH 7.
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Table 1. Rate and Equilibrium Constastfor Oxidation of 8-OHdG in Aqueous Solution at 2@5 °C

redox standard's

—_ . K

oxidizing radical// Kox/ ) — ) EpH/VnHE

/,Lobsen/atioAnm pH l@ M_l 5_1 S‘+8 OHdG ke S+8 OHdG pH ES/VNHE kfb kr Keqc 8'OHdG

Bry 71325 6.9 1.1 tryptophan 3.0 149 1.2x 1@ 3025 0.99
N3*/330 7.6 5.6
TI?*/325 3.2 1.6 3,5-dihydroxyanisole 75 0984 1.2x 107 2x 10° 58 0.74
SO7/330, 390 7.0 4.3 3,5-dihydroxyanisole 13.2 0464.4x 10 35x 10f 164 0.33
CH;0/320 7.0 0.83 4-methyl-2-methoxyphenol 7.0 0.68 1.3x 1¢° 0.1 0.74
CCl0,'/370 g 0.38
TyrO/480 7.0 =0.02 1,2,4-trimethoxybenzene 3.0 M4 26x10° 26x 100 112 1.02
Trp'*/420, 565 3.0 1.2
Trp(—H)*/400 7.0 0.017 1,2,4,5-tetramethoxybenzene 6.0 0.88A8x 10" 54x10° 259 081
dG(—H)/450, 540 7.0 0.46
G5-MP(—H)*/330, 550 5.0 0.84
cisMeOCH=CHOMe**/330 7.7 0.83
2,3-Me-4,5-DHF*"1/400 7.5 0.56

2 Error limits +10%.° The forward reactionkf) is between the one-electron-oxidized redox standard and 8-OHdG. The redox standards were
oxidized with Bg*~. ¢ The constant is from theoncentrationst equilibrium and, where possible, from tkieeticallymeasured values (froka and

ky). 4 From ref 36.¢ From ref 37.f From ref 38.9 Solvent 65% (v/v) water,

25% 2-propanol, 10% acetone, saturated with C&ectrochemically

determined. From ref 39.From ref 40. 2,3-Dimethyl-4,5-dihydrofurane.
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To better understand the role in DNA of 8-OHdG, it is
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Figure 2. Dependence of the reduction potential E/NHE of one-electron
oxidized 8-OHdG on pH. The solid line is a computer fit to the formula
given in ref 43. Redox standards use® tryptophan, & 1,2,4-
trimethoxybenzeney 1,2,4,5-tetramethoxybenzerie 4-methyl-2-meth-
oxyphenol,a 3,5-dihydroxyanisole.

kcal/mol. Itis thus clear that not the guanine but the 8-OH-guanine
moiety is theultimatesink of oxidizing equivalents in DNAS47
The presence of 8-OHdG in DNA makes this macromolecule

necessary to know its redox po’[entia]_ From the fact that the G vulnerable to oxidation from “enVirOﬂl:nenta!" radi.Cals such as
radical is able to oxidize 8-OHdG (Figure 1, Table 1) and also Peroxyl €; = 1.05 V);®49and even amino acid radicals such as
from the literaturé& 232424t is evident that 8-OHdG is more easily ~ tyrosyl (0.93 V) tryptophyl (1.01-1.08 Vf*“or to thiyl radicals

oxidized than G. It was found that the compounds tryptophan (0.75 V)" as they may exist in the histone proteins covering the

(Ez = 1.2 VINHE)2641 3,5-dihydroxyanisole §; = 0.84 V)’
4-methyl-2-methoxyphenol&; = 0.68 V)38 1,2,4-trimethoxy-
benzene = 1.14 V)2 or 1,2,4,5-tetramethoxybenzene (0.889
V)40 are able to establish an electron transfguilibrium with
8-OHdG radical. From the measured equilibrium const#ats

DNA. By functioning as the ultimate “positive hole” sink, the
oxidation of DNA is funneled into this (desired?) direction. By
serving this function, 80H-dGrotects the other basefsom
oxidation#é

Supporting Information Available: The spectra of one-electron-

for electron transfer between the systems and applying the Nernstoxidized 8-OHdG at pH 3, 7.7, and 13.3 (PDF). This material is available

equation to converKeq into AE,*? the reduction potentigkE of

free of charge via the Internet at http://pubs.acs.org.

the one-electron-oxidized 8-OHdG radical was determined at JA993508E

different pH values (Table 1). The pH-dependencg &f shown
in Figure 2, the (averaged) value at pH 7 being 0.74 V/NfE.
The difference in reduction potential at pH 7 between-8§°
(1.29 V) and 8-OHdG{H)* (0.74 V) of 0.55 W45 corresponds
to a driving force for oxidation of 8-OHdG by GH)* of 13
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